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Long-time traces of the initial condition in relaxation phenomena near criticality

U. Ritschel and H. W. Diehl
Fachbereich Physik, Universitat Gesamthochschule Essen, D-45117 Essen, Germany
(Received 1 June 1994)

The time evolution of systems relaxing towards thermal equilibrium is examined near the critical
temperature 7., with special attention paid to the role of the initial value m; of the order parameter
¢. To this end, the n-component model 4 [model A according to P. C. Hohenberg and B. I. Halperin,
Rev. Mod. Phys. 49, 435 (1977)] for a cube of length L is investigated. The common belief that all
memory of m; is necessarily lost after a microscopic time span is shown to be unfounded. General
arguments and the exact solution of the limit n — oo show that m; leaves its traces in both the
linear and nonlinear long time relaxation of ¢ near or at T.. Specifically, for linear relaxation near
T., or at T. with L < oo, the amplitude of the exponential decay depends on m; and the short-

time exponent 8’ = (z; — z4)/z, provided t; ~ m

—z/z;

is comparable to or larger than other time

scales. Here, z; is the scaling dimension of m;, z is the dynamic bulk exponent, and x4 is the usual

equilibrium scaling dimension of ¢.

PACS number(s): 64.60.Ht, 05.70.Jk, 05.70.Ln, 75.40.Gb

How does a thermodynamic property of a system at
temperature 7' above, but near its critical point T, re-
lax to zero with time ¢t? This is a long-studied problem
of critical dynamics, which we wish to reexamine here.
The main question we wish to answer is whether and to
what extent the initial condition affects such relaxation
processes on long time scales.

The stochastic models used in the theory of dynamic
critical phenomena [1] to represent the various dynamic
universality classes, by construction, possess a number of
properties such as detailed balance which guarantee that
the system relaxes from almost any initial configuration
towards the thermal equilibrium state. The common be-
lief is that all memory of the initial state gets lost on a
microscopic time scale. As we shall show, this is not in
general the case: Under appropriate (realizable) condi-
tions (to be discussed below), the initial condition may
well leave its fingerprints on the relaxational behavior on
long time scales.

To become more specific, let us consider the following
relaxation process: A ferromagnetic system with non-
conserved m-component order parameter ¢ and purely
relaxational dynamics (model A of Ref. [1]) is prepared
in a macrostate with homogeneous magnetization m; at
temperature Ty > T, and magnetic field h > 0. Att =10
the magnet is rapidly quenched to a temperature T' 2> T,
and h is switched off. Then the system is left to evolve.

Immediately after the quench, up to some microscopic
time scale t;c, the time evolution clearly should be non-
universal, depending on both the microscopic details of
the interactions in the sample and the initial condition.
For t — oo, the same unique equilibrium state is ap-
proached, irrespective of the precise initial condition.
This suggests that for sufficiently large ¢ > t.,;c the pro-
cess should enter a regime of universal behavior, involv-
ing only a few macroscopic time scales.

One well-known such scale is the characteristic time
tr ~ 7Y%, where 7 = (T — T.)/T.; in our case it may
be defined as the linear relaxzation time [2] of the order
parameter m(t) = (¢(x,t)) in a bulk system. For a long
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time it had been believed that only two time regimes with
universal time dependence could be distinguished [1]: a
regime t >> t, of linear relaration, m(t) ~ e~t/* and a
regime tgi. < t K t, of nonlinear relazation [3,4] with
m(t) ~ t=P/¥2. The problem with this simple picture is
that it precludes the possibility of any initial-time effects
on macroscopic time scales. This is unjustified since the
initial value m; yields an independent time scale ¢; that
may become arbitrarily large for sufficiently small m;.
In fact, if we assume that m; scales with a dimension z;
under dilatations, then ¢; ~ m; #/®i  This suggests that
the above simple picture is incomplete and needs to be
corrected.

A crucial step in this direction was made by Janssen et
al. [5,6], who showed that, contrary to previous assump-
tions, x; is a genuine new exponent, generally different
from the scaling dimension x4 of ¢(t > 0). As a conse-
quence, m(t) was found to exhibit a nontrivial short-time
behavior of the form m(t) ~ t% for tmic KKt L tgy
with 8’ = (x; — x4)/z. For model A below its upper crit-
ical dimension d* = 4, z; turned out to be larger than
T4, so that m(t) actually increases in this regime.

Reference [5] and subsequent work [7] mainly dealt
with the critical case (¢, = 0o0). To complement these
findings we here focus our attention on regimes in which
t > tmic is large compared to the linear relaxation time.
While our main interest is in the bulk case, we will also
discuss the finite-size case of a cube of length L with
periodic boundary conditions, so that the special case
t; = 0o, L < oo treated in Ref. [8] is included. For this
special case we have shown there that the initial condi-
tion also affects the linear relaxational behavior on long
time scales. Using general scaling arguments, we show
below that this phenomenon is not restricted to finite-
size systems at T, but can be observed quite generally in
the case of linear relaxation. Our main findings will be
corroborated by exact solutions for the n — oo limit of
the mentioned n-component model A with L < co.

To develop our argument we begin by recalling the
scaling form [8]
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m(t, 7, L,m;) = Cp t P/VZ F(t/t, t/t, t/t;) (1)

phenomenological scaling considerations lead one to an-
ticipate on large length and time scales. Here C,, is a
nonuniversal amplitude. Further nonuniversal metric fac-
tors appear in t,, t;, and t;. The function F is universal.

In Ref. [8], the form of F (0,9, ?) in various limits was
discussed. For example, the anomalous short-time behav-
ior ~ t% could be traced back to the fact that F(0,0,)
exists and behaves as

F(0,0,9) r Fpe; 9%/* (2)

as ¥ =t/t; = 0 [9], where Fp.; is a universal constant.

In the long-time limit, with which we are concerned
here, m(t) must decay exponentially, unless ¢, = ¢, = oco.
That is, as t — oo with fixed ¢, t1, and ¢;, it should vary
as

m(tytr tr,t:)/Cm ~ Mo e /8 | (3)

Compatibility with (2) requires that the amplitude M,
and the linear relaxation time tg have appropriate scaling
forms. The former in general depends on 7, L, and m;;
it can be written as

My (7, Lym;) = t7P/"% A(ty, [t.,ti/t.) . (4)

On the other hand, ¢tg should be independent [11] of m;
and satisfy the relation

tg(r,L) =t T (tL/t-) . (5)

Since t; = tg(7, ) and t;, = tg(0, L), the function 7 ()
must have the asymptotic properties

T(x—o00)=1 and T(z—0)==z. (6)

Turning to the universal amplitude function A(z,y),
we first note that the bulk limit £ — oo of (4), and hence

Az = o0, y) = Ap(y) , (7)
should exist. At criticality, (4) should become
Mo ~ t7%/"*B.(t:/t1) - (8)
This implies the behavior
Az, w/z) = z=P/"* Be(w) (9)

as ¢ — 0 with fixed w = ¢t;/ty. If both ¢, and tr are
large compared to t;, it seems reasonable to expect (in
complete accordance with our exact results below) that
any dependence on m; should drop out of the limiting
form of m(t) and hence of M,. From this we infer the
asymptotic properties
A(z,0) = Ao (z) and B.(0) = Beo (10)
in which B.. # 0 is a finite universal number.
Of particular interest are the cases with t; large com-
pared to t., to tr, or to both. For those our exact results
below and in Ref. [8] reveal a dependence of My, on m;,

suggesting that this dependence should be linear. In or-
der that this behavior complies with (4) we must have

A(z,y = 00) &y~ Ay(z) . (11)
From this we immediately deduce the limiting form
Mo ~ const x m; t% A;(tr/t,) (12)

for t; — oo with fixed ¢, and t;. This is a central result
of this paper. It shows that the amplitude M., depends
indeed on the initial value m;, and that the short-time
exponent §' governs the T dependence of M. For the
function A; we anticipate the limiting properties

Ai(z —» 00) ~ Ay and  Ai(z — 0) = A 2® . (13)

The first ensures that both above features survive the
bulk limit L — oco; the second implies that (12) reduces
for t, > t; > t correctly to the 7 = 0 form

Mo ~ const x m; t9 Aj. (14)

discovered in Ref. [8].

The scaling forms predicted above may all be verified
explicitly in the limit n — oo of our model. This is
defined by the Langevin equation

A0, t) = (At T+ L) e +C, (15)

in which 7. is the usual static critical value of the bare
squared mass, while ¢ is a Gaussian random force with
zero mean and variance

(Cal(x,t) Ca(x',t')) =2080g0(x —x")6(t —t') . (16)

We assume that 2 < d < 4, so that an ordered equilib-
rium bulk state exists and hyperscaling is valid. In the
limit n — oo the model becomes Gaussian with a time-
dependent susceptibility x(t); its dynamics is completely
described by the self-consistent set of equations

X(8) Oym(t) = —Am(t) (17)
and

X =T+ T+ L [0 +m()?] (18)
with

Cct) =7 Clat,t), (19)

where m(t) now means the rescaled magnetization
n~/2|(p(x,t))| with initial value m(t = 0) = m;. For
brevity all arguments of m(t,7,L,m;) but t are omit-
ted. The sum in (19) extends over discrete momenta
q = 27m/L with m € Z¢. The Fourier-transformed
autocorrelation function C(q;t,t) may be expressed in
terms of the response propagator
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G(q;t,t') =0(t —t') exp (—A/ﬂ dt" [q® + x(t")"l]>
(20)

as

C(q;t,t)=2A/ dt' G(q;t,t') G(q;t,t') . (21)
0

When (17) and (18) are combined, x(t) can be elimi-
nated to obtain a linear integro-differential equation for
f(t) = 1/m?(t) that can be solved by Laplace trans-
formation [12]. The result for the Laplace transform

f(s) = [J° dte™*! f(t) can be written down in explicit
form. Ignoring corrections to scaling, we find

Dy/L*m? + 2)\/sL?
(sL?/2\) — D, Li-27 /A, '

f(s) = (22407 L7 - (22)

where

o) =/t s [ deE RO e,
(23)

with

oo d
k() = ( > e‘"2/4€> -1,

(24)
Ag=—(4n)"%?T(1-d/2), and D,=6/g.
The result can be cast in the expected scaling form

f(s) = const x t}j—zﬁ/w G (st t-/tr,ti/tr) ,  (25)

with 1+28/vz = d/2 for the n = oo case considered here.
The relaxation times ¢, and ¢z, [normalized in accordance
with (3) and (5)] are explicitly given by

Dym\ ™7 L
— —_— — 2
( A ) and tp Yo (26)

> =

tr =

with the n = oo values vz = 2/(d — 2) and z = 2. The
parameter zo denotes the zero of h(z). Upon taking ¢;
as

Dy(d—2)  _./a;
= 9 " " : 27
ti 4 i ’ 27)

with the n = oo value z/z; = 2, one can derive from (25)
the scaling function

2w/(d—2)+1/u
(Tou/2) — (zo/v)@=2)/2"

G(u,v,w) = W (28)

For general values of t,, tr, and ¢; the Laplace back
transform of (22) — and hence the scaling function F —
cannot be calculated analytically but must be computed
numerically [8]. However, Fp.(9) = F(0,0,9), the scal-
ing function pertaining to the bulk critical case, can be
obtained in closed form. It reads

Fie(9) = (%1-)/ - (29)

For ¥ < 1, Fpe =~ 92, in accordance with (2). In the
large-9 limit, Fpe = 1 — 1/29 + O(972), i.e., the leading
term is independent of ¥. This bears out that the result-
ing asymptotic long-time form of m(t), the well-known
nonlinear relaxation, becomes indeed independent of the
initial value m;.

The asymptotic long-time behavior (3) of m(t) in the
case t; + t, > 0, and the scaling function A of (4), can
also be obtained analytically, employing standard results
about Laplace transformation [13]. The asymptotic ex-
ponential decay follows from the contribution of the pole
of f(s) with largest positive real part, which in turn may
be identified with 2/tg. One thus finds that the scaling
function 7 (z = t1/t;) of (5) is the solution to

h(zoz/T) — (zoz)@2/2 = 0. (30)

Noting that h(zo) = 0 and h(z — oo0) ~ %271, one
easily verifies that the limiting properties (6) are satisfied.
The result for the scaling function A(z,y) reads

2h’(:l)0.’1:/7—) )1/2
(d—2)T + 4y ’

with the n = oo exponent value ¢/ = (4 — d)/4 and
where we have chosen the normalization such that A(z —
oo,y — 0) — 1. Our result bears out the fact that the
amplitude M, defined in (3), in general, depends on t;
and hence on m;. Memory of the initial value is lost only
by decay.

Starting from (31) all the asymptotic cases discussed
above can be studied in detail. Especially the scaling
functions A, B, Ax, and A; introduced in (7), (9),
(10), and (11), respectively, can be calculated explicitly.
For y = 0 in (31), we obtain

Alz,y) = (zoz)” ( (31)

2k (zox /T)] 1/2

Ao (z) = (zo 2)? [W

(32)

In this case the dependence on the initial field drops out,
only subleading terms in the asymptotic expansion de-
pend on the initial conditions.

In the complementary limit, ¥y — oo, we identify by
comparing with (11)

Ai(z) = 272 (20 2)" [R (zoz/T)]? (33)

and the limiting forms (12) and (14) can be verified.
Hence, in the regime t; > t,, tp the amplitude M, in-
deed depends linearly on m;. Further, the 7 or L de-
pendence of M, for ¢t; > tr, > t, or t; > t, > tr,
respectively, is governed by the universal short-time ex-
ponent 8'. For the latter case it is essential that 6’ also
occurs in the scaling function A(z,y).

So far we have focused our attention on the magnetiza-
tion, the one-point function of the field theory. A natural
question to ask is whether the above long-time depen-
dence on m; also occurs in other quantities, in particular,
in two-point functions. For our model with n = oo the
result for the response propagator reads
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Glast,t') = 0(t — t') %:)) eI (-t (34

Thus in the t,t’ — oo limit it is given by
G(q;t,t') = O(t —t') e~ AL +1/te)(t=t)) (35)

that is, all dependence on m; drops out. A similar result
holds for the two-point cumulant.

A second obvious question is whether similar long-time
traces will also occur for other models. Since our scal-
ing arguments have been fairly general, we expect this
to happen for those universality classes that have a non-
trivial critical short-time behavior — i.e., for models with
a nonvanishing short-time exponent 6’. As shown in Ref.
[7], interesting critical short-time behavior also occurs
when (i) the order parameter is coupled to a conserved
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density (model C') and (ii) when one has reversible mode
coupling (models G and E). It would certainly be inter-
esting to extend our above analysis to these cases.

In summary, we have shown that, against the com-
mon belief, initial conditions affect critical relaxation pro-
cesses even in the long-time regime. As expressed in (4)
and explicitly verified for the large-n limit, the ampli-
tude of the linear decay is governed by the initial value
of the order-parameter field as long as t;, the initial time
scale, is comparable to or larger than other time scales.
As critical dynamics is now in reach of computer simula-
tions [14], it should also be possible to verify our results
numerically.
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